Category Archives: Math

Low Precision Sine and Cosine

Actionscript:
  1. var t:Number=0, cos:Number, sin:Number;
  2.  
  3. var canvas:BitmapData = new BitmapData(400,400,false, 0x000000);
  4. addChild(new Bitmap(canvas));
  5.  
  6. var shape:Shape = new Shape();
  7. with(shape.graphics) beginFill(0x568338, .2), drawCircle(0,0,10);
  8.  
  9. addEventListener(Event.ENTER_FRAME, onLoop);
  10. function onLoop(evt:Event):void {
  11.    
  12.          t += .1;
  13.         // -- low precision sine/cosine
  14.         //always wrap input angle to -PI..PI
  15.         if (t <-3.14159265){
  16.             t += 6.28318531;
  17.         }else{
  18.         if (t>  3.14159265)
  19.             t -= 6.28318531;
  20.         }
  21.        
  22.         //compute sine
  23.         if (t <0){
  24.             sin = 1.27323954 * t + .405284735 * t * t;
  25.         }else{
  26.             sin = 1.27323954 * t - 0.405284735 * t * t;
  27.         }
  28.        
  29.         //compute cosine: sin(t + PI/2) = cos(t)
  30.         t += 1.57079632;
  31.         if (t>  3.14159265){
  32.             t -= 6.28318531;
  33.         }
  34.        
  35.         if (t <0){
  36.             cos = 1.27323954 * t + 0.405284735 * t * t
  37.         }else{
  38.             cos = 1.27323954 * t - 0.405284735 * t * t;
  39.         }
  40.         t -= 1.57079632;
  41.        
  42.         // move the shape
  43.         shape.x = 200 + 100 * cos;
  44.         shape.y = 200 + 100 * sin;
  45.        
  46.         // draw to the canvas
  47.         canvas.draw(shape, shape.transform.matrix);
  48. }

This snippet draws a circle using low precision sine and cosine... you'll notice that its not a perfect looking circle:


Back in January I saw this blog post by Michael Baczynski over at http://lab.polygonal.de/. The blog post describes a technique for fast sine and cosine approximation - (I highly recommend giving it a read - very fun stuff).

It's worth noting that there is a higher precision sine and cosine that will likely draw a better looking circle but will be about half as fast. According to the original post ... the low precision technique is approximately 14x faster than using Math.cos()/Math.sin().

There some other really great posts over at polygonal go check them out.

Also posted in motion | Tagged , | 2 Comments

Bezier Intersections (not a snippet)

Actionscript:
  1. var resolution:Number = .03;
  2. var pointNum:int = Math.ceil(1 / resolution);
  3.  
  4. var bezA:Array = new Array();
  5. populateArray(bezA);
  6. var a:Sprite = dot(100, 200);
  7. var b:Sprite = dot(200, 100);
  8. var c:Sprite = dot(300, 200);
  9.  
  10. var bezB:Array = new Array();
  11. populateArray(bezB);
  12. var d:Sprite = dot(300, 100, 0xCCCC00);
  13. var e:Sprite = dot(120, 130, 0xCCCC00);
  14. var f:Sprite = dot(200, 300, 0xCCCC00);
  15.  
  16. addEventListener(Event.ENTER_FRAME, onLoop);
  17. function onLoop(evt:Event):void {
  18.       with(graphics){
  19.           clear();
  20.           lineStyle(0, 0x000000);
  21.        
  22.           // calc and draw bezier points
  23.           drawBezier(bezA, a, b, c);
  24.           drawBezier(bezB, d, e, f);
  25.          
  26.           // calc collisions
  27.           var intersections:Array = calculateIntersection(bezA, bezB);
  28.          
  29.            // draw collisions
  30.            beginFill(0xFF0000);
  31.            if (intersections.length> 0){
  32.                 for (var i:int = 0; i<intersections.length; i++){
  33.                     drawCircle(intersections[i].x, intersections[i].y, 3);
  34.                 }
  35.            }
  36.            endFill();
  37.      }
  38. }
  39.  
  40. function populateArray(a:Array):void {
  41.     for (var i:int = 0; i<pointNum; i++){
  42.         a.push(new Point());
  43.     }
  44. }
  45.  
  46. function drawBezier(bez:Array, a:Sprite, b:Sprite, c:Sprite):void{
  47.      with(graphics){
  48.          bezier(bez, a.x, a.y, b.x, b.y, c.x, c.y);
  49.          var leng:Number = bez.length;
  50.          moveTo(bez[0].x, bez[0].y);
  51.          for (var i:int = 1; i<leng; i++){
  52.              lineTo(bez[i].x, bez[i].y);
  53.          }
  54.      }
  55. }
  56.  
  57. function bezier(bez:Array, x1:Number, y1:Number, x2:Number, y2:Number, x3:Number, y3:Number):void {
  58.             var b:Number, a2:Number, ab2:Number, b2:Number;
  59.             var pnt:Point;
  60.             var inc:int = 0;
  61.             for (var a:Number = 0; a <=1; a+=resolution) {
  62.                 b= 1 - a;
  63.                 a2 = a * a;
  64.                 ab2 = a * b * 2;
  65.                 b2 = b * b;
  66.                 pnt = bez[inc];
  67.                 pnt.x = a2 * x1 + ab2 * x2  + b2 * x3;
  68.                 pnt.y = a2 * y1 + ab2 * y2 + b2 * y3;      
  69.                 inc++;
  70.             }
  71. }
  72.  
  73. function calculateIntersection(bezA:Array, bezB:Array):Array {
  74.     var intersections:Array = new Array();
  75.     var ip:Point;
  76.     var aLength:int = bezA.length;
  77.     var bLength:int = bezB.length;
  78.     var p1:Point, p2:Point, p3:Point, p4:Point;
  79.    
  80.     // compare all line segments and check for
  81.     // intersections
  82.     for (var i:int = 1; i<aLength; i++){
  83.         p1 = bezA[i - 1];
  84.         p2 = bezA[i];
  85.         for (var j:int = 1; j<bLength; j++){
  86.             p3 = bezB[j - 1];
  87.             p4 = bezB[j];
  88.             ip = intersection(p1, p2, p3, p4);
  89.             if (ip){
  90.                 intersections.push(ip.clone());
  91.             }
  92.         }
  93.     }
  94.     return intersections;
  95. }
  96.  
  97. var ip:Point = new Point();
  98.  
  99. function intersection(p1:Point, p2:Point, p3:Point, p4:Point):Point {
  100.      
  101.     var nx:Number, ny:Number, dn:Number;
  102.     var x4_x3:Number = p4.x - p3.x;
  103.     var pre2:Number = p4.y - p3.y;
  104.     var pre3:Number = p2.x - p1.x;
  105.     var pre4:Number = p2.y - p1.y;
  106.     var pre5:Number = p1.y - p3.y;
  107.     var pre6:Number = p1.x - p3.x;
  108.    
  109.     nx = x4_x3 * pre5 - pre2 * pre6;
  110.     ny = pre3 * pre5 - pre4 * pre6;
  111.     dn = pre2 * pre3 - x4_x3 * pre4;
  112.    
  113.     if (dn == 0){
  114.         return null
  115.     }
  116.     nx /= dn;
  117.     ny /= dn;
  118.     // has intersection
  119.     if(nx>= 0 && nx <= 1 && ny>= 0 && ny <= 1){
  120.         ny = p1.y + nx * pre4;
  121.         nx = p1.x + nx * pre3;
  122.         ip.x = nx;
  123.         ip.y = ny;
  124.     }else{
  125.          return null;
  126.     }
  127.     return ip
  128. }
  129.  
  130. // draggable dot
  131. function dot(xp:Number, yp:Number, col:uint = 0x507399, noDrag:Boolean = false):Sprite {
  132.     var s:Sprite = Sprite(addChild(new Sprite));
  133.     s.x = xp;
  134.     s.y = yp;
  135.     with(s.graphics) beginFill(col), drawCircle(0,0,5);
  136.     if (!noDrag){
  137.         s.buttonMode = true;
  138.        s.addEventListener(MouseEvent.MOUSE_DOWN, onDrag);
  139.     }
  140.     return s;
  141. }
  142. function onDrag(evt:MouseEvent):void {
  143.     evt.currentTarget.startDrag()
  144. }
  145.  
  146. stage.addEventListener(MouseEvent.MOUSE_UP, onUp);
  147. function onUp(evt:MouseEvent):void{
  148.     stopDrag();
  149. }

This is not a snippet, but it uses some functions that could be considered snippets on their own. Take a look at the swf here:

Bezier Intersection Demo

This demo show a brute force method for getting the coordinates of all intersections between two given quadtratic bezier curves. The approach is pretty simple, each bezier is actually made up of a series of line segments. The resolution variable determines how many line segments make up one bezier curve. By default I use a resolution of 0.03 (~34 lines)... the higher the resolution decimal value, the fewer the number of line segments. I then use a slight variation on yesterdays line segment intersection function to test all existing line segments for intersections.

This is a brute for approach with lots of room for improvement. But in the scenario that you only need to check a few bezier curves for intersection this approach works quite nicely. I don't recommend this approach if your trying to create a complex vector drawing tool with boolean vector operations etc...

It's easy to get an idea of the different approaches to this problem with a little googling. One example I found is from Graphics Gems:

http://tog.acm.org/GraphicsGems/gemsiv/curve_isect/

it's been awhile, but I believe this website also contains information related to this topic:

http://algorithmist.wordpress.com/

Also posted in bezier | Tagged , | Leave a comment

Line Intersection Part 2 (optimized)

Actionscript:
  1. // optimized line to line intersection test:
  2. // from wikipedia: http://en.wikipedia.org/wiki/Line-line_intersection
  3. // and http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/
  4. var ip:Point = new Point();
  5.  
  6. function intersection(p1:Sprite, p2:Sprite, p3:Sprite, p4:Sprite):Point {
  7.     var nx:Number, ny:Number, dn:Number;
  8.     var x4_x3:Number = p4.x - p3.x;
  9.     var y4_y3:Number = p4.y - p3.y;
  10.     var x2_x1:Number = p2.x - p1.x;
  11.     var y2_y1:Number = p2.y - p1.y;
  12.     var x1_x3:Number = p1.x - p3.x;
  13.     var y1_y3:Number = p1.y - p3.y;
  14.    
  15.     nx = x4_x3 * y1_y3 - y4_y3 * x1_x3;
  16.     ny = x2_x1 * y1_y3 - y2_y1 * x1_x3;
  17.     dn = y4_y3 * x2_x1 - x4_x3 * y2_y1;
  18.    
  19.     nx /= dn;
  20.     ny /= dn;
  21.    
  22.     // has intersection
  23.     if(nx>= 0 && nx <= 1 && ny>= 0 && ny <= 1){
  24.         ny = p1.y + nx * y2_y1;
  25.         nx = p1.x + nx * x2_x1;
  26.         ip.x = nx;
  27.         ip.y = ny;
  28.     }else{
  29.         // no intersection
  30.         ip.x = ip.y = -1000;
  31.     }
  32.     return ip
  33. }
  34.  
  35.  
  36. //
  37. // test out the function:
  38. //
  39.  
  40. stage.frameRate = 30;
  41. var a:Sprite = dot();
  42. a.x = a.y = 100;
  43.  
  44. var b:Sprite = dot();
  45. b.x = b.y = 200;
  46.  
  47. var c:Sprite = dot();
  48. c.x = 200
  49. c.y = 100;
  50.  
  51. var d:Sprite = dot();
  52. d.x = 100
  53. d.y = 200;
  54.  
  55. var inter:Sprite = dot(0xFF0000,true);
  56.  
  57. addEventListener(Event.ENTER_FRAME, onLoop);
  58. function onLoop(evt:Event):void {
  59.     var p:Point = intersection(a, b, c, d);
  60.     inter.x = p.x;
  61.     inter.y = p.y
  62.    
  63.     with(graphics){
  64.         clear();
  65.         lineStyle(0,0x000000);
  66.         moveTo(a.x, a.y);
  67.         lineTo(b.x, b.y);
  68.         moveTo(c.x, c.y);
  69.         lineTo(d.x,d.y);
  70.     }
  71. }
  72.  
  73. // draggable dot
  74. function dot(col:uint = 0x507399, noDrag:Boolean = false):Sprite {
  75.     var s:Sprite = Sprite(addChild(new Sprite));
  76.     with(s.graphics) beginFill(col), drawCircle(0,0,5);
  77.     if (!noDrag){
  78.         s.buttonMode = true;
  79.        s.addEventListener(MouseEvent.MOUSE_DOWN, onDrag);
  80.     }
  81.     return s;
  82. }
  83. function onDrag(evt:MouseEvent):void {
  84.     evt.currentTarget.startDrag()
  85. }
  86.  
  87. stage.addEventListener(MouseEvent.MOUSE_UP, onUp);
  88. function onUp(evt:MouseEvent):void{
  89.     stopDrag();
  90. }

This is a significantly optimized version of yesterdays post. The function intersection() takes four sprites as its arguments. The four arguments could be considered starting points and ending points for two line segments.

The bottleneck in yesterdays post looked something like this;

nx = (p1.x * p2.y - p1.y * p2.x) * (p3.x - p4.x) - (p1.x - p2.x) * (p3.x * p4.y - p3.y * p4.x);
dn = (p1.x - p2.x) * (p3.y - p4.y) - (p1.y - p2.y) * (p3.x - p4.x);
ny = (p1.x * p2.y - p1.y * p2.x) * (p3.y - p4.y) - (p1.y - p2.y) * (p3.x * p4.y - p3.y * p4.x);
return new Point(nx /dn, ny / dn);

nx and ny are the numerators for two fractions both with dn as their denominator.... after taking a look at this page:

http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/

We can simplify things a bit before we start wrapping repetitive math operations up in variables:

Actionscript:
  1. nx = (p4.x - p3.x) * (p1.y - p3.y) - (p4.y - p3.y) * (p1.x - p3.x);
  2. // ny = (p2.x - p1.x) * (p1.y - p3.y) - (p2.y - p1.y) * (p1.x - p3.x);
  3. dn = (p4.y - p3.y) * (p2.x - p1.x) - (p4.x - p3.x) * (p2.y - p1.y);
  4. nx /= dn;
  5. // ny /= dn
  6. ny = p1.y + nx * (p2.y - p1.y);
  7. nx = p1.x + nx * (p2.x - p1.x);
  8. return new Point(nx, ny);

It's important to note here that if we didn't intend to calculate line segments we could exclude the initial calculation of ny.

At this point we're ready to get rid of duplicate math operations by wrapping them in variables. In this case this only includes subtraction:

Actionscript:
  1. var x4_x3:Number=p4.x-p3.x;
  2. var y4_y3:Number=p4.y-p3.y;
  3. var x2_x1:Number=p2.x-p1.x;
  4. var y2_y1:Number=p2.y-p1.y;
  5. var x1_x3:Number=p1.x-p3.x;
  6. var y1_y3:Number=p1.y-p3.y;
  7.  
  8. nx=x4_x3*y1_y3-y4_y3*x1_x3;
  9. ny=x2_x1*y1_y3-y2_y1*x1_x3;
  10. dn=y4_y3*x2_x1-x4_x3*y2_y1;
  11.  
  12. nx/=dn;
  13. ny/=dn;
  14.  
  15. ny=p1.y+nx*y2_y1;
  16. nx=p1.x+nx*x2_x1;
  17.  
  18. return new Point(nx, ny);

After wrapping repetitive math into variables the only optimization left to be made is related to the instantiation of a new Point(). Instantiation of objects is an expensive process, so it's better to define the point once outside of the intersection() function definition.

In the end our function looks like this:

Actionscript:
  1. var ip:Point = new Point();
  2.  
  3. function intersection(p1:Sprite, p2:Sprite, p3:Sprite, p4:Sprite):Point {
  4.     var nx:Number, ny:Number, dn:Number;
  5.     var x4_x3:Number = p4.x - p3.x;
  6.     var pre2:Number = p4.y - p3.y;
  7.     var pre3:Number = p2.x - p1.x;
  8.     var pre4:Number = p2.y - p1.y;
  9.     var pre5:Number = p1.y - p3.y;
  10.     var pre6:Number = p1.x - p3.x;
  11.     nx = x4_x3 * pre5 - pre2 * pre6;
  12.     ny = pre3 * pre5 - pre4 * pre6;
  13.     dn = pre2 * pre3 - x4_x3 * pre4;
  14.     nx /= dn;
  15.     ny /= dn;
  16.     // has intersection
  17.     if(nx>= 0 && nx <= 1 && ny>= 0 && ny <= 1){
  18.         ny = p1.y + nx * pre4;
  19.         nx = p1.x + nx * pre3;
  20.         ip.x = nx;
  21.         ip.y = ny;
  22.     }else{
  23.         // no intersection
  24.         ip.x = ip.y = -1000;
  25.     }
  26.     return ip
  27. }

The final version contains a conditional that checks the end values of nx and ny, if they are between 0 and 1 then we know that there is an intersection between the segments.

Note: Optimized code usually breaks some best practices... as best practices are usually geared toward code flexibility and readability... and not speed.

Also posted in misc | Tagged , | Leave a comment

Line Intersection Part 1 (unoptimized)

Actionscript:
  1. // completely unoptimized line to line intersection test:
  2. // from wikipedia: http://en.wikipedia.org/wiki/Line-line_intersection
  3. function intersection(p1:Sprite, p2:Sprite, p3:Sprite, p4:Sprite):Point {
  4.     var nx:Number, ny:Number, dn:Number;
  5.     nx = (p1.x * p2.y - p1.y * p2.x) * (p3.x - p4.x) - (p1.x - p2.x) * (p3.x * p4.y - p3.y * p4.x);
  6.     dn = (p1.x - p2.x) * (p3.y - p4.y) - (p1.y - p2.y) * (p3.x - p4.x);
  7.     ny = (p1.x * p2.y - p1.y * p2.x) * (p3.y - p4.y) - (p1.y - p2.y) * (p3.x * p4.y - p3.y * p4.x);
  8.     return new Point(nx / dn, ny / dn);
  9. }
  10.  
  11. //
  12. // test out the function:
  13. //
  14.  
  15. stage.frameRate = 30;
  16. var a:Sprite = dot();
  17. a.x = a.y = 100;
  18.  
  19. var b:Sprite = dot();
  20. b.x = b.y = 200;
  21.  
  22. var c:Sprite = dot();
  23. c.x = 200
  24. c.y = 100;
  25.  
  26. var d:Sprite = dot();
  27. d.x = 100
  28. d.y = 200;
  29.  
  30. var inter:Sprite = dot(0xFF0000,true);
  31.  
  32. addEventListener(Event.ENTER_FRAME, onLoop);
  33. function onLoop(evt:Event):void {
  34.     var p:Point = intersection(a, b, c, d);
  35.     inter.x = p.x;
  36.     inter.y = p.y
  37.    
  38.     with(graphics){
  39.         clear();
  40.         lineStyle(0,0x000000);
  41.         moveTo(a.x, a.y);
  42.         lineTo(b.x, b.y);
  43.         moveTo(c.x, c.y);
  44.         lineTo(d.x,d.y);
  45.     }
  46. }
  47.  
  48. // draggable dot
  49. function dot(col:uint = 0x507399, noDrag:Boolean = false):Sprite {
  50.     var s:Sprite = Sprite(addChild(new Sprite));
  51.     with(s.graphics) beginFill(col), drawCircle(0,0,5);
  52.     if (!noDrag){
  53.         s.buttonMode = true;
  54.        s.addEventListener(MouseEvent.MOUSE_DOWN, onDrag);
  55.     }
  56.     return s;
  57. }
  58. function onDrag(evt:MouseEvent):void {
  59.     evt.currentTarget.startDrag()
  60. }
  61.  
  62. stage.addEventListener(MouseEvent.MOUSE_UP, onUp);
  63. function onUp(evt:MouseEvent):void{
  64.     stopDrag();
  65. }

This snippet shows the first step toward a usable line to line intersection test. While this demo is fully functional, there is some room for optimization within the intersection() function itself...

From Equations to Code

When I go directly from an equation to code I like to try to make the code resemble the equation... test to make sure it works and then add optimizations. I do this to keep things clear for myself and also so that I have a step by step process to show my students.

The optimizations and additional features that I'll add to this function tomorrow will make it look very different from the original equation from wikipedia. Some things that I'll do:

1) tweak the equation to use fewer operators (it has 12 multiplications right now)
2) wrap duplicate mathmatical operations in variables
3) add the ability to test for line segments rather than infinite lines
4) move any object instantiation outside the function
etc...

Also posted in misc | Tagged , | Leave a comment